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Class Groups of Quadratic Fields 

By Duncan A. Buell 

Abstract. The author has computed the class groups of all complex quadratic num- 
ber fields Q(VTID) of discriminant - D for 0 < D < 4000000. In so doing, it was 
found that the first occurrences of rank three in the 3-Sylow subgroup are D = 

3321607 = prime, class group C(3) X C(3) X C(9.7) (C(n) a cyclic group of order 
n), and D = 3640387 = 421.8647, class group C(3) X C(3) X C(9.2). The author 
has also found polynomials representing discriminants of 3-rank > 2, and has found 
3-rank 3 for D = 6562327 = 367.17881, 8124503, 10676983, 193816927, all prime, 

390240895 = 5.11.7095289, and 503450951 = prime. The first five of these were 
discovered by Diaz y Diaz, using a different method. The author believes, however, 
that his computation independently establishes the fact that 3321607 and 3640387 
are the smallest D with 3-rank 3. 

The smallest examples of noncyclic 13-, 17-, and 19-Sylow subgroups have 
been found, and of groups noncyclic in two odd p-Sylow subgroups. D = 119191 = 

prime, class group C(15) X C(15), had been found by A. 0. L. Atkin; the next such 
D is 2075343 = 3.17.40693, class group C(30) X C(30). Finally, D = 3561799 = 
prime has class group C(21) x C(63), the smallest D noncyclic for 3 and 7 together. 

Introduction. Throughout this paper, -D < 0 will denote the discriminant of 
an imaginary quadratic number field, and "smallest" will refer to D, not to - D, so 
that "smallest D" means "largest discriminant." 

The author has computed the class groups of all quadratic number fields Q(VT-), 
d > 0, of discriminant - D, for 0 < D < 4000000. By a theorem of Gauss, if D has 
k distinct prime factors, the 2-Sylow subgroup of the class group has rank k - 1. Apart 
from this, the groups tend to be cyclic. Even the 2-Sylow subgroup tends to be k - 2 
elementary 2-groups and one large cyclic factor collecting the other powers of two in 
the class number, so that the 2-Sylow subgroup of the subgroup of squares is cyclic. 
In computing the 2-Sylow subgroup, then, we actually computed that subgroup of the 
subgroup of squares, and shall, by abuse of language, call this the 2-Sylow subgroup, 
calling the group cyclic if the subgroup of squares is. The subgroup of squares is, in 
the terminology of Gauss, the principal genus, and a discriminant for which the prin- 
cipal genus is noncyclic is called irregular. Thus, what we call a discriminant with a 
noncyclic 2-Sylow subgroup is a discriminant which Gauss would call irregular. 

Statistics were kept on the frequency of occurrence of noncyclic groups, and of 
the noncyclic p-Sylow subgroups for p = 2, 3, 5, 7. Special listings were also made of 
the noncyclic p-Sylow subgroups for p > 11, of the p-Sylow subgroups C(pa) x C(pb) 

with a and b > 2, and of the class groups noncyclic in more than one p-Sylow sub- 
group. We note here that 95.74% of the class groups turned out to be cyclic. The 
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method of computation is outlined in Appendix A; the results are listed and discussed 
in Appendix B. 

In the process of computation, we found that D = 3321607 = prime has class 
group C(3) x C(3) x C(9.7), and D = 3640387 = 421.8647 has class group C(3) x 
C(3) x C(9.2). These are the smallest D for which the class group has p-rank greater 
than two, for p > 3. That an infinity of discriminants with 3-rank 3 exists has been 
proved by Craig [1], and numerous examples were given by Shanks and his collabora- 
tors [2]-[5], the smallest D being 63199139. 

We developed a method for obtaining quartic polynomials representing, for all 
squarefree negative integer values within certain bounds, discriminants with 3-rank > 2. 
With this method, we found six more discriminants with 3-rank 3. The method and 
these immediate results are detailed in Section 1. 

Subsequent to our investigation, we learned that Diaz y Diaz [6], [6a] had made, 
by an entirely different method, an extensive search for discriminants with 3-rank > 3, 
and had found, in addition to our five smallest D, ninety-four others smaller than 
63199139. We feel, however, that our computation is the first complete verification 
of the fact that 3321607 and 3640387 are the smallest D with 3-rank 3. 

In Section 2, we investigate an identical relation between forms obtained by the 
method of Section 1, and obtain a connection between the group composition of forms 
of discriminant -D and the group law of the elliptic curve y2 = 4X3 - D. Finally, 
in Section 3, we consider problems and conjectures of our method. 

All of the computations were made on the IBM 370/158 computer at the Uni- 
versity of Illinois at Chicago Circle, Chicago, Illinois; we thank the University for mak- 
ing the computer facilities available. 

1. Let D be a positive squarefree integer. The solutions in integers of the Di- 
ophantine equation 

(1) 4a3 =b2 +c2D, 0<a<v'i/30<b, (b, c)<2, 

correspond to ideals a = (a, (b + cV7iD)/2) in the ring of integers of Q(if7D) whose 
cube is principal: a3 = ((b + c-D)/2) [4]. More simply, if (a, b) = 1, there is a 
quadratic form (a, b, a2) of discriminant -c2D whose cube is principal: 

(a, b, a2)2 - (a2, b, a) (a, -b, a2) (a, b, a2)1. 

Let us assume c = 1 in (1), and drop the restriction on the size of a, and call this 
Eq. (la). We seek to produce discriminants -D with a large 3-rank in the class group 
by obtaining parametric representations 

(2) -D = A(x)= S2 -4C3 = S2 -4C3 = S2 - 4C3 1 1 ~2 2 3 3 

where the Si and C, are polynomials in x: 

S.(x) = x2 + a.x + b, cQ(x) = c1x + d1. 

Then (2) implies 

(S. + S.)(S. - S.) = 4(C. - C)(C2 + C.C. + C2), 1 < i,j 3, i < j. I I I~~~ I I I J 
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If we insist that the linear term on the right divides the linear term on the left, that is, 

(3) S1 - S2 = K(C1 - C2), S1 - s3 = K(C1- C3), S2 - S3 = K(C2 - C3), 

for K an integer, we obtain the equations: 

b2 - 4d3 = b2_4d3, (b - b - d) = K, (a aC)/(c ) = K 
1 1 2 2 1 21 2)/d12 2C1 2 

(4) al = (K12)(c1 - C2) + (2/K)(d2(2C2 + c1) + d1(2c1 + C2)), 

2K = (2c1 + c2)2 + 3c2 

and two other sets of equations from the latter two of Eqs. (3). Considering the last 
equation in each set, we get, by the theory of automorphs of the form (1, 1, 1), that 
cl + c2 + c3 = 0. Using this, we can reduce the relations among the coefficients to 
the following: 

b24d3 = _b24d3 b2 _ 4d3 1 1 2 2 3 3~ 

(b1 - b2)1(dl - d2) = (bl - b3)/(dl - 4 = (b2 - b3)/(d2 - d3) = K 

(5) 
2K = (2u + v)2 + 3v2, (c1, C2, c3) some permuL. on of (u, v, - u - v), 

al C1K + (2/K)(cldl + c2d2 + c3d3) = clK + M, 

a2 =c2K+M, a3 =c3K+M. 

Thus, if we assume b1, b2, b3, d1, d2, d3, K, u, and v satisfy the first three of Eqs. (5), 
we obtain, except in certain special cases, six distinct polynomials A(x) for each solu- 
tion (u, v, - u - v), corresponding to the two 3-cycles of the solution. (If K = 6u2 
we have u = v, and if K = 2u2, we have u = - v. In the former instance only one 
cycle results; in the latter, only one cycle up to a change of sign, which, as we shall 
note, does not affect the polynomials obtained.) It appears to be the case, though we 
have not yet proved it, that exactly one of the two 3-cycles yields integers a,, while 
the other yields only rational solutions in general. In the special cases, the ai appear 
to be integral. Since the triple (C1, C2, C3) is determined only up to a sign change, we 
choose as a convention that the largest of the c,1 should be chosen negative, noting 
that L(c1, C2, C3, X) = A(- C1, - C2, - C3, -X). 

We show now that only the first two of Eqs. (5) are independent; for all K such 
that the first two equations are solvable, 2K = u2 + 3V2 has integer solutions u and 
v. The first equation can be partly rewritten 

(b1 + b2)(b1 - b2) = (d1 - d2)((2d2 + d1)2 + 3d2). 

Dividing by 4(d1 - d2), we obtain 

((b, + b2)/2)(K/2) = ((2d2 + d1)2 + 3di2)/4. 

The left-hand side is thus the norm of an integer in Q(\/73). The only reason, then, 
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that 2K = u2 + 3v2 might not be solvable would be that pl(K12) and pl((b1 + b2)/2), 
for p a prime which is 2 modulo 3. But then we must have pldl and pj(2d2 + dl); 
there are no primitive representations p2 = u2 + 3V2 for such p. That p I(K12) and 
((b1 + b2)/2), however, implies that plbl and pIb2, so that p21-D = b- 4dl3. Thus 
if D is squarefree, 2K = u2 + 3v2 has integer solutions u and v. 

We now have a list of discriminants A(x), and we establish conditions for inde- 

pendence of the forms. If (Q, p, Q2) and (S, R, S2) lie in the same or in inverse class- 
es, then we can find integers a, b, c, d, such that ad - bc = + 1 and that 

4QS = (2Qa + pC)2 - c2A(x), 4QS = (2Sd - Rc1)2 - c2A(x), 

where cl equals c if the classes are the same, and - c if they are inverse to each other. 
If A(x) < 0 and 4QS < - A(x), we must choose c = 0. This forces S = Qa2 and 
Q = Sd2, which imply S = Q. Thus, of the forms (Ci, Si, Cr), if we can satisfy 4CC, 
<- A(x) for A(x) < 0 and i # j, we are guaranteed that the 3-Sylow subgroup of the 
class group of Q(VrAi(x)) has rank at least two. (That we cannot guarantee rank three 
by the existence of the third form will appear in Section 2.) 

It remains to be seen that solutions (di, bi), i = 1, 2, 3, and K exist for the firsi 
two of Eqs. (5). The smallest D for which 31h(Q(\/bD)) is D = 23, and we do indeed 
find solutions. However, since A(x) is a quartic polynomial, it assumes only finitely 
many negative integer values, and for these A(x) the discriminants less than zero are 
much too small to be interesting. 

The appearance of D = 3321607, however, with thirteen pairs of solutions to 
(la), provided numerous useful polynomials A(x). From (94, 27), (152, 3275), (538, 
24891), K = 56, (cl, c2, c3) = (4, 2,- 6), we get 

A(x) = (X2 + 133x + 27)2 - 4(4x + 94)3 = (X2 + 21x + 3275)2 - 4(2x + 152)3 

= (x2 - 427x + 24891)2 - 4(- 6x + 538)3. 

This A(x) is negative for integers x, -8 S x < 75, and A(70) = - 6562327 
- 367.17881 has class group C(3) x C(3) x C(9.2.7). 

From (152, -3275), (284, 9397), (1868, 161461), K = 96, (cl, c2, C3) = 

(4, 4, - 8), we get a A(x) which is negative for integers x, - 1 S x < 201. A(60) = 

- 193816927 = - prime has class group C(3) x C(3) x C(3.5.53). A(108) = 
- 390240895 = - 5.11.7095289 has a class group whose 3-Sylow subgroup is C(3) x 

C(3) x C(27). 
From (128, -2251), (202, 5445), (2374, 231333), K = 104, with (cl, 

c2, C3) = (6, 2, -8) (which has nonintegral ai), we find that A(169) = -503450951 
- prime has class group C(3) x C(3) x C(27.103). 

We now take the constant in A(x) to be -6562327, and choose (118, 99), 
(248, 7379), (418, 16899), for which K = 56. If we let (cl, c2, c3) = (2, -6, 4), 
A(7) = - 8124503 = - prime has class group C(3) x C(3) x C(9.29); if we let (cl, c2 
c3) = (4, 2, -6), we find that A(7)-- 10676983 = - prime has class group C(3) x 
C(3) x C(3.5.7). 
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2. The group law on an elliptic curve may be described simply by saying that 
collinear points sum to zero. That is, if the three (counting multiplicities) points of 
intersection of the curve with a straight line are P1, P2, and P3, then P1 + P2 + P3 = O. 

The composition of binary quadratic forms is considerably more complicated, in 
part because the elements of the group are not the forms themselves, but the classes 
of forms equivalent under the transformations of the modular group. One algorithm 
for composition is as follows: 

To compound (a, b, c) with (a', b', c'), both of discriminant -D, let b" = 

(b + b')/2, m = (a, b"), and n = (a', m). Solve the equation ax + b"y = m for x andy, 
and then the congruence 

mz/n (b" - b)x - cy (mod a'/n) 

for z. If we then let A = aa'/n2, B = b + 2az/n, and C = (B2 + D)/4A, the class of 
(A, B, C) is that compounded of the classes of (a, b, c) and (a', b', c'). In general, 
(A, B, C) will not be reduced. 

Now, let D-- 1 (mod 4) be a squarefree positive integer, and let (di, bi), i = 

1, 2, 3, be the points of intersection of the elliptic curve y2 = 4X3 - D with the line 
Y = KX + L. We assume that dl, bl, d2, b2, and K are integers, and let F1 = (dl, 
b1, dl) and F2 = (d2, b2, d2) be the corresponding forms. We note, as symmetric 
functions of the roots, that 

(6) K2/4=dl +d2 +d3 and L2 +D=4did2d3d 

By the first of these, K is even if and only if d3 (and hence b3) is integral. In this 
case, we have a third form F3 = (d3, b3, d2). 

If K is odd, then d3 = t/4 and b3 = u/4, for t and u odd integers. We notice 
4t3 = (2u)2 + 64D; barring the restriction on the size of a, we have a solution of (1). 
The ideal which we obtain is a = (t, u + 4N/7ii). Dividing (1) by 4, we notice that 
t =1 (mod 8), and we rewrite the basis of a as follows: 

a = (t, u + 4,fT=>, u(1 - t)/4 + (1 - t)yCTiD) = (t, u + 4y'Jh, u(1 - t)/4 + V7ii) 
= (t, u(l - t)14 + yC7i) = (t, u( - t)/4 + rt + \/T) = (t, U), 

where r can be any integer. We choose r to be an odd integer such that tf(u - 4r). 
Then the norm of U is ts, where s is prime to t, and t is the norm of a. Since t is 
odd, we can choose as basis t and U/2: a = (t, U/2). We note that since t =1 (mod 
8), and r is assumed odd, U is odd, and (U + 1715)/2 is an integer in Q(VFTh). By 
the correspondence between classes of ideals and classes of forms [7], a induces a 
form (t, U, v) of discriminant - D, and has t and U/2 as an integral basis. We choose 
an equivalent form for F3: 

F3 = (t, u(1 - t)/4 + t, vl). 

We now state and prove the following 
THEOREM. With the above notation, 

F1o ?F2 F3 (1, 1,(D + 1)/4) =group identity. 
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Thus, the composition of classes of forms coincides with the group law of the elliptic 

curve. 
Proof. We rewrite the first of Eqs. (5): 

(7) (bl + b2)K = 4(d2 + dld2 + d2). 

If pldl and pi(b1 + b2), for an odd prime p, then pld2. This, however, implies that 

pl(b1 - b2), hence plb1, and p2 ID. Thus, in compounding, m and n are powers of 2 
(or are 1). Simple congruences modulo 8 show that di and d2 (and d3, if it is integral) 
are even if and only if D-- 1 (mod 8) and odd if and only if D- 5 (mod 8). 
We now distinguish three cases: 

(i) K is even. We know that d1 - d2 is even, and that bl and b2 are odd. We 
write bl =4k +r, b2 = 4j+ s, withr, s =+ 1 or + 3. Then 

bu - b2 =4(k - j) + (r - s) =K(d1 - d2)O (mod 4). 

Hence r =s, and b" =2(k + j) + r, which is odd. Thus n = 1. 
We now compound the first and second forms, defining b", m, and n as above, 

and solving d1x + (b, + b2)y/2 = m for x and y. Then 

mz (b" - bl)x - d2y (mod d2) 

(b2 - bl)x/2 - dy(-K/2)x(d - d2) - dy 

(- K/2)xd1 - 
diy (- K/2)(m - y(b1 + b2)12) - dy 

(- Km/2) + yK(b1 + b2)/4 - dy. 

But K(b1 + b2)/4d2 + d d2 + d2 d2 (mod d)hence 2 1 1 2 2 1 2',hec 

mz--- Km/2 (mod d2), 

z--K/2 (mod d2), since (m, d2)=l. 

The compounded form is thus (djd2, bl - Kdl, C), for some integer C. From 
Eqs. (6), we see that C = d3, so the composition is, remembering bl - Kd1 = 

b2 - Kd2 = b3 - Kd3 =L, 

(did2, b3 - Kd3, d3) ' (d3, - b3, d2) (d3, b3, d)1. 

(ii) K is odd, and D-- 1 (mod 8). From (7), 41(b1 + b2), hence b, b2 
(mod 4). Write bl = 4k + r, and b2 = 4j +r + 2. Then K = (4(k- j) -2)/(d1 - d2), 
which implies that exactly one of d, /2 and d2/2 is odd. We assume, without loss of 
generality, that d1/2 is odd. Then m = n = 2. We solve for x, y, and z as before, and 
find that z -- K (mod d2/2). The compounded form is then (djd2/4, b, - Kdj, t) 
where we again use (6) to find the third term of the form. Since t 1 (mod 8), and 
(u - Kt)/4 = L, which is odd, we see that (K - u)/4 is odd. This implies that 

(u - Kt)/4 (1 - t)u/4 + t (mod 2t); 

hence 
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F1 oF -(d d 14,L, t)(t, -(1-t)u14+t, vl)- F;' 
(iii) K is odd, and D- 5 (mod 8). Since di is odd, m = n = 1. Again, we 

solve for x, y, and z, and find this time that z (d2 - K)/2 (mod d2). Then F1 o 
F2 - (d1d2, L + d1d2, J), where J = ((L + d1d2)2 + D)/4d1d2. Using (6), we find 
-L - dd2 + 4J= L + t, so (d1d2, L + d1d2, J) - (J, L + t, t). Now, (u - Kt)/4 
= L is even, and t 1 (mod 8); we see K u (mod 8). This is sufficient to prove 
that 

L + t-u(l- t)/4 + t (mod 2t); 
hence 

(J, L + t, t) - (t,- (I-t)u/4 + t, vl) , F3 1 

and the theorem is proved. 

3. The odd discriminants of complex quadratic number fields are congruent 
either to - 1 or -5 modulo 8. We have so far applied the method of Section 1 only 
to the former type, beginning with - 3321607 as the constant term. The odd discrim- 
inants thus obtained are always congruent to - 1 modulo 8 because the a of Eq. (la) 
are always even. One could also begin with the constant term - 3640387- 5 (mod 8), 
but the series which arise are inherently less useful, half of the discriminants being even 
and not fundamental. (It follows from (6) and the representation of 2K that the ci 
are even if D 1 (mod 8) and that exactly two of the c1 are odd if D-5 (mod 8). 
Thus, for D 5 (mod 8), the a, are even, if they are integral, hence S1(x) is even for 
odd integers x.) 

Using Scholz's theorem [8], we can deduce the 3-rank of the real fields Q(V\3JD) 
from that of the complex fields Q(VbD). However, in all of the eight discriminants 
found the 3-rank of the corresponding real field is, by the theorem, only two. 

The major question which we have not been able to answer has already been 
raised: Why should one 3-cycle of solutions to 2K = u2 + 3v2 yield integer coef- 
ficients a,, and one 3-cycle not do so? We have noted further that when four 3-cycles 
exist, as for K = 728, only one of these yields integer values a1. 

The fact that quartic polynomials represent discriminants of complex quadratic 
fields only finitely many times is a limiting condition on the method we have develop- 
ed. We considered cubic and sextic polynomials first, as they do not have this property. 
If, in (2), one lets the Si and Ci be linear, one finds easily that there are no solutions 
with rational integer coefficients. We were successful in solving (2) with the S1 and 
C1 monic cubic and quadratic polynomials, respectively, so that A(x) has leading term 
- 3x6. However, A(x) was inherently not squarefree except in rare instances. For 
this reason we concentrated our attention on the quartic polynomials of Section 1. 

Appendix A. The basic method of computation of the class numbers and class 
groups was suggested by Atkin, who used it to compute some tables of his own. The 
method of computing the class group was published by Shanks in [9]. The program 
was written entirely in FORTRAN, and was run in segments, each segment computing 
the class numbers, groups, and statistics for a block of discriminants of length 200000, 
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even and odd discriminants comprising different segments. (Thus, one such segment 
contained the odd discriminants -D, 600000 < D < 800000.) An array of length 
50000, CLANO, was used to store the needed information on the discriminants, 
CLANO(N) corresponding to D = D(N) = 4N + i + S, where S is the appropriate 
multiple of 200000 for the program segment being computed, and i is 0 or -1, de- 
pending on the parity of the discriminants in that segment. 

The discriminants were first factorized, adding 10000 to CLANO for each prime 
factor, and adding - 1000000 if a factor appeared twice. This allowed an easy separa- 
tion of the fundamental from the nonfundamental discriminants, as neither the num- 
ber of factors nor the class number would be large enough to make the entry of CLANO 
positive later. Also, since the actual class number is only about /D, the number of 
genera could be computed from the number of factors of D by using FORTRAN arith- 
metic to separate the digits of CLANO from one another. 

The class numbers for all discriminants in a segment were computed together by 
executing a triple loop on the coefficients b, a, and c (from the outermost to the inner- 
most loop) of the binary quadratic form (a, b, c) and then incrementing the counter 
CLANO(N) for the appropriate -D(N) = b2 - 4ac. That is, instead of fixing a value 
for D and then computing the reduced forms for that D, we computed all reduced 
forms with discriminants in the range of the segment and kept a count for each D. 
Some care was taken to optimize these loops and remove all unnecessary multiplication; 
D was computed each time by adding to the previous D, rather than by direct computa- 
tion. 

The primary list of discriminants, number of genera, and number of forms per 
genus was now computed and printed, and a secondary list of "possibly noncyclic" 
groups was extracted. (In what follows, we describe the computation for an odd 
p-Sylow subgroup; the suitable changes for the case p = 2 are easy, but the descrip- 
tion in words is cumbersome.) A group was "possibly noncyclic" in the p-Sylow sub- 
group if p2 Ih, where h is the order of the group (the class number). Each group in 
the list of possibles was then tested in the following manner: If h = pim, (m, p) = 1, 
one chooses "at random" (to be described in the next paragraph) up to eleven forms 
of the group and computes the hp1-ith power of each. Should any of these not be 
the identity, the group is cyclic, and we proceed to the next discriminant. If that 
power of each of the eleven forms in the identity, the group is assumed to be noncyclic, 
and an actual computation of the p-Sylow subgroup is made, under the assumption 
that the group is noncyclic. 

We now describe the "random" method for obtaining forms of a given discrim- 
inant: If, for a given -D, there is an a such that -D is a quadratic residue modulo 
a, then there exists a form of discriminant -D and leading coefficient a. We checked 
through the odd primes under 1000, in increasing order, to find one for which -D 
was a residue. Taking this prime for the coefficient a, we searched for the smallest b 
such that b2 - D (mod a), obtaining a form (a, b, c), which we then reduced. A 
reasonably thorough testing of this method and a continued use of it have not revealed 
any obvious patterns in the forms produced, sQ we have assumed that it was suffi- 
ciently random for our purposes. 
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Appendix B. The smallest D for which the class group of Q(v'7D) is noncyclic 
in the p-Sylow subgroup are listed in Table 1, even and odd discriminants being listed 
where known. No even discriminants with a noncyclic 17-Sylow subgroup were found. 
We note also that D = 1016083, 1438483, 1663747, 2407267, and 2942227, all (ne- 
cessarily) prime, have class group exactly C(13) x C(13). 

Of interest also are the groups which are noncyclic in more than one Sylow sub- 
group. There were 418 of these in all. Most of these were C(12) x C(12), the first 
(even and odd D) being 64952 and 104255. The first C(20) x C(20) subgroups oc- 
curred for D = 472196 and 280847; the first C(28) x C(28) subgroups were for D = 

858296 and 465719. The class group C(15) x C(15) for D = 119191 had been found 
some time ago by A. 0. L. Atkin; surprisingly, the next examples are quite large. We 
list them in Table 2. Throughout Tables 1-10, column A is the discriminant -D, 
column B the factorization of D, and column C the class group of Q(VC7D), where, 
for example, 15 x 15 signifies the group C(15) x C(15). 

The question of which finite Abelian groups occur as class groups of quadratic 
fields has been discussed at length in the literature (for example, [15], [16], and [17]). 
In Tables 11-13 we list some of the more unusual groups that occurred. Columns A 
through D are, respectively, the group, the smallest D for which that group occurred, 
the factorization of D, and the number of occurrences of that group. In Table 11 
are listed, for p > 3, the groups which are themselves, or whose principal genera are, 
p-groups C(pa) x C(pb) with a and b > 2. Note the single example of p > 5. In 
Table 12 are the 2-groups which contain a C(4) x C(4) x C(4) subgroup, that is, the 
2-groups whose principal genus has rank 3. There were no groups found with a sub- 
group C(pa) x C(pb), a and b > 3 and p > 2; we list in Table 13, however, the class 
groups whose principal genus contained a subgroup C(2a) x C(2b), a and b > 3. 

Finally, in Tables 14 and 15 we collect some statistics on the frequency of oc- 
ourrence of noncyclic groups. 

TABLE 1 

E A B C A B C 

3 -3299 prime 3x9 -3896 8.487 3x12 
5 -11199 3.3733 5x20 -17944 8.2243 5x10 
7 -63499 prime 7x7 -159592 8.19949 7x14 

11 -65591 107.613 11x22 -580424* 8.13.5581 22x22 
13 -228679* 11.20789 13x26 -703636* 4.175909 13x26 
17 -1997799* 3.59.11287 34x34 ------------------------------- 
19 -373391* 67.5573 19x38 -3419828* 4.854957 19x38 

TABLE 2 

A B C A B C 

-119191 prime 15x15 -3150391 prime 15x105 
-2075343 3.17.40693 30x30 -3358427 349.9623 15x30 
-2403659 prime 15x45 -3492051 3.941.1237 30x30 
-2690455 5.37.14543 30x30 -3561799 prime 21x63 
-2766392 8.59.5861 30x30 -3860484 4.3.321707 30x30 
-2982783 3.809.1229 30x30 -3862148 4.67.14411 30x30 
-3072743 83.37021 15x60 -3874699 467.8297 15x30 
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TABLE 3 

Groups with a 20 x 20 subgroup 

A B C A B C 

-280847 7.53.757 20x20 -2540344 8.17.18679 20x20 
-458695 5.199.461 20x20 -2664955 5.29.18379 20x20 
-472196 4.97.1217 20x20 -2713144 8.7.48449 20x20 

-1323896 8.7.47.503 2x20x20 -2729255 5.19.28729 20x60 
-1567495 5.251.1249 20x40 -2814299 17.19.8713 20x40 
-1627451 7.29.8017 20x20 -2910615 3.5.61.3181 2x20x20 
-1633487 19.149.577 20x40 -2922488 8.401.911 20x40 
-1663023 3.457.1213 20x40 -2925944 8.7.52249 20x40 
-1751335 5.23.97.157 2x20x20 -2985995 5.199.3001 20x40 
-1847795 5.101.3659 20x20 -3044455 5.41.14851 20x40 
-2007172 4.337.1489 20x20 -3174951 3.13.81409 20x80 
-2025560 8.5.79.641 2x20x20 -3256568 8.7.58153 20x40 
-2176955 5.11.39581 20x20 -3270307 17.47.4093 20x20 
-2295736 8.31.9257 20x20 -3390483 3.457.2473 20x20 
-2326904 8.239.1217 2Qx60 -3401615 5.7.17.5717 2x20x40 
-2452439 11.113.1973 20x120 -3642743 13.17.53.311 2x20x40 
-2524247 11.29.41.193 2x20x40 -3972344 8.97.5119 20x80 

TABLE 4 

Groups with a 28 x 28 subgroup 

A B C A B C 

-465719 37.41.307 28x28 -3055571 37.269.307 28x28 
-632687 11.113.509 28x28 -3158111 11.53.5417 28x84 
-858296 8.17.6311 28x28 -3326771 7.137.3469 28x28 

-2471624 8.521.593 28x28 

TABLE 5 

Noncyclic 5-Sylow subgroups for D < 100000 

A B C A B C 

-11199 3.3733 5x20 -67063 199.337 5x30 
-12451 prime 5xS -67128 8.3.2797 lOxlO 
-17944 8.2243 SxlO -69811 7.9973 SxlO 
-30263 53.571 5x30 -72084 4.3.6007 lOxlO 
-33531 3.11177 SxlO -74051 prime 5x35 
-37363 prime Sx5 -75688 8.9461 SxlO 
-38047 prime Sx15 -81287 29.2803 Sx50 
-39947 43.929 SxlO -83767 211.397 5x30 
-42871 43.997 5x30 -84271 11.47.163 lOx20 
-50783 43.1181 Sx50 -85099 7.12157 SxlO 
-53079 3.13.1361 lOx20 -85279 107.797 5x40 
-54211 23.2357 SxlO -87971 13.67.101 lOxlO 
-58424 8.67.109 lOxlO -89751 3.29917 5x60 
-61556 4.11.1399 lOx20 -90795 3.5.6053 lOxlO 
-62632 8.7829 SxlO -90868 4.22717 SxlO 
-63411 3.23.919 lOxlO -92263 257.359 5x30 
-64103 13.4931 5x40 -98591 19.5189 5x90 
-65784 8.3.2741 lOxlO -99031 167.593 5x30 
-66328 8.8291 SxlO -99743 7.14249 5x60 
-67031 17.3943 5x80 
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TABLE 6 

Noncyclic 7-Sylow subgroups for D < 500000 

A B C A B C 

-63499 prime 7x7 -268739 31.8669 7x28 
-118843 prime 7x7 -272179 prime 7x21 
-124043 163.761 7x14 -275636 4.68909 7x42 
-149519 prime 7x91 -294935 5.61.967 14x28 
-159592 8.19949 7x14 -299627 103.2909 7x28 
-170679 3.56893 7x56 -301211 prime 7x21 
-183619 139.1321 7x14 -308531 29.10639 7x28 
-185723 prime 7x21 -318547 113.2819 7x14 
-220503 3.31.2371 14x28 -346883 19.18257 7x28 
-226691 prime 7x35 -361595 5.13.5563 14x14 
-227387 prime 7x21 -366295 5.73259 7x56 
-227860 4.5.11393 14x14 -373655 5.74731 7x84 
-236931 3.78977 7x14 -465719 37.41.307 28x28 
-240347 prime 7x21 -480059 prime 7x49 
-240655 5.48131 7x28 -489576 8.3.20399 14x28 
-247252 4.61813 7x14 -491767 37.13291 7x42 
-260111 prime 7x77 

TABLE 7 

Noncyclic 11-Sylow subgroups 

A B C A B C 

-65591 107.613 llx22 -2659099 23.115613 llx22 
-126407 19.6653 llx22 -2661639 3.17.52189 22x44 
-175031 383.457 llx66 -2668715 5.7.76249 22x22 
-272231 prime llx33 -2697779 7.385397 llx66 
-423335 5.11.43.179 2x22x22 -2741799 3.913933 llx88 
-527019 3.175673 llx22 -2747743 43.63901 llx66 
-580424 8.13.5581 22x22 -2828680 8.5.70717 22x22 
-593183 prime llx77 -2913679 109.26731 llx132 
-680767 prime 1lx33 -2934312 8.3.122263 22x22 
-694907 571.1217 llx22 -2946299 prime llxSS 
-767147 prime llx33 -3032179 prime llx33 
-857099 prime llx33 -3037459 127.23917 llx44 

-1161239 prime 11x99 -3130027 prime llx33 
-1314676 4.11.29879 22x22 -3131864 8.23.17021 22x44 
-1451639 7.207377 llx132 -3152315 5.103.6121 22x22 
-1471423 prime llx33 -3251123 113.28771 llx44 
-1654147 11.150377 llx22 -3301883 13.499.509 22x22 
-1689371 509.3319 llx66 -3418507 149.22943 llx22 
-1734395 5.13.26683 22x22 -3426456 8.3.11.12979 2x22x22 
-1764687 3.588229 llx44 -3431179 prime llx33 
-1963419 3.167.3919 22x22 -3497892 4.3.291491 22x22 
-2148079 307.6997 llxllO -3645907 883.4129 llx22 
-2253971 prime llxSS -3781607 173.21859 llxllO 
-2608212 4.3.217351 22x22 -3810631 11.346421 llx132 
-2628123 3.876041 llx22 -3894239 prime llx297 
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TABLE 8 

Noncyclic 13-Sylow subgroups 
A B C A B C 

-228679 11.20789 13x26 -2676383 prime 13x117 
-703636 4.175909 13x26 -2708135 5.23.23549 26x78 

-1016083 prime 13x13 -2772843 3.924281 13x26 
-1022639 prime 13x91 -2793752 8.13.26863 26x26 
-1043999 11.107.887 26x52 -2795939 17.163.1009 26x26 
-1192367 11.61.1777 26x26 -2942227 prime 13x13 
-1201667 503.2389 13x26 -2943271 19.97.1597 26x26 
-1277843 7.182549 13x26 -3081748 4.770437 13x26 
-1328359 41.179.181 26x26 -3220040 8.5.79.1019 2x26x26 
-1384831 7.181.1093 26x26 -3519247 prime 13x65 
-1438483 prime 13x13 -3544952 8.347.1277 26x26 
-1440659 11.130969 13x52 -3715559 prime 13x143 
-1582399 7.13.17389 26x26 -3730568 8.466321 13x52 
-1663747 prime 13x13 -3756504 8.3.156521 26x26 
-1968323 7.281189 13x26 -3799192 8.474899 13x26 
-2074760 8.5.51869 26x26 -3805224 8.3.158551 26x26 
-2407267 prime 13x13 -3991559 11.13.103.271 2x26x52 
-2524487 7.43.8387 26x52 

TABLE 9 

Noncyclic 17-Sylow subgroups 

A B C A B C 

-1997799 3.59.11287 34x34 -2984171 47.63493 17x34 
-2667895 5.17.31387 34x34 -3112639 prime 17x85 
-2890903 1019.2837 17x34 

TABLE 10 

Noncyclic 19.Sylow subgroups 

A B C A B C 

-373391 67.5573 19x38 -3419828 4.854957 19x38 
-1078919 prime 19x57 -3479127 3.1159709 19x38 
-2505135 3.5.167009 38x38 -3837956 4.959489 19x76 

TABLE 11 

A B C D A B C D 

9x9 -134059 prime 3 18x18 -727087 37.43.457 18 
9x27 -351751 prime 4 18x54 -1871295 3.5.124753 7 
9x81 -1332167 prime 1 2x18x18 -2442020 4.5.7.17443 5 
9x18 -208084 4.52021 5 25x5O -1390367 11.263q7 1 

9x54 -690503 11.62773 9 

TABLE 12 

A B C D A B C D 

4x4x8 -503659 13.17.43.53 4 4x8x8 -2209467 3.13.181.313 4 
4x4x16 -550712 8.23.41.73 6 4x8x16 -1456131 3.61.73.109 1 
4x4x32 -863455 5.19.61.149 5 2x4x4x16 -2172651 3.13.17.29.113 2 
4x4x64 -3600632 8.7.113.569 1 2x2x4x4x8 -2188920 8.3.5.17.29.37 1 
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TABLE 13 

A B C D A B C D 

16x16 -618947 7.29.3049 16 16x128 -3194495 5.29.22031 1 
16x48 -936183 3.313.997 12 32x32 -2365599 3.421.1873 1 
16x80 -1831031 29.103.613 3 2x16x16 -804639 3.11.37.659 17 
16x112 -1602095 5.11.29129 1 2x16x48 -3228215 5.17.163.233 2 
16x32 -971095 5.359.541 17 2x16x32 -1987215 3.5.17.7793 2 
16x96 -2747399 43.181.353 1 2x2x16x16 -3909576 8.3.11.59.251 
16x64 -1008095 5.11.18329 6 

TABLE 14 

A B C D E F 

Odd D 810578 265739 32.78 32507 12.23 4.01 

Even D 405276 166296 41.03 19345 11.63 4.77 

Total 1215854 43203S 35.S3 51852 12.00 4.26 

A-number of fundamental discriminants 
B-number of possibly noncyclic groups 
C=lOOxB/A 
D=number of actually noncyclic class groups 
E=100xD/ B 
F=1OOxD/ A 

TABLE 15 

Noncyciic p-Sylow subgroups 

P=2 A B C D E F 
Odd D 810578 122971 15.71 20837 16.94 2.57 
Even D 405276 101029 24.93 13862 13.72 3.42 
Total 1215854 224000 18.42 34699 15.49 2.85 

P=3 A B C D E F 

Odd D 810578 115904 14.30 10132 8.74 1.25 
Even D 405276 57264 14.13 4832 8.44 1.19 
Total 1215854 173168 14.24 14964 8.64 1.23 

kE-S A B C D E F 

Odd D 810578 37485 4.62 1419 3.79 .18 
Even D 405276 17639 4.35 648 3.67 .16 
Total 1215854 55124 4.53 2067 3.75 .17 

P=7 A B C D E F 

Odd D 810578 16877 2.08 295 1.75 .04 
Even D 405276 7620 1.88 149 1.96 .04 
Total 1215854 24497 2.01 444 1.81 .04 

A=number of fundamental discriminants 
B=number of possibly noncyclic p-Sylow subgroups 
C=lOOxB/A 
D=number of actually noncyclic p-Sylow subgrOUPS 
E=lOOxD/B 
F=lOOxD/A 
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